На главную * Превью к матчам * Бесплатные прогнозы * Tips on sport(english) * Группа WatsApp * Конкурс прогнозов * Помощь сайту * Контакты сайта * Бонус на Betfair

     

 


 

Главная страница
Our english site
Топ-100 новостей
Топ-100 прогнозов
◊ Rss Прогнозы
Rss Новости спорта
Каталог статей
Статьи о ставках
Разное интересное
Развлечения
Наши опросы
Поиск по сайту
Софт для азартных
Чат о ставках
Бонусы у букмекеров
Список букмекеров
Букмекеры с Webmoney
Все биржи ставок

Прогнозы
Бесплатные прогнозы
Прогнозы от Дмитрия
Ставка дня
Удаление Да
◊ Прогнозы 1X2
Robobet
Прогнозы на тотал
Рассылка прогнозов
Рассылки других сайтов


 

Кубок Конфедераций
Прогноз на ЕВРО2012
Видео прогнозы
Чемпионат Мира 2014
Чемпионат Европы2016

букмекер париматч parimatch


 

 
01. Торговые системы Форекс
02. Формула-1 на КПК и смартфонах
03. Сборник книг о покере
04. Карточная игра в дурака 6.0 - Полная версия
05. Игра для расслабления
06. Штука / The Grand (2007) DVDRip 700Mb
07. Узницы замка Кнаттерфель:Стрип-покер(StripPoker/2009)
08. Видеоуроки покера с Дэниелом Негряну
09. Везунчик / Lucky You (2007) DVD9 Лицензия
10. Коллекция книг о покере

 

Прогнозы до матча


 
Forex
Horce racing
Азартные игры
Договорные матчи
Интервью спортсменов
Интернет Тв
Казино
Как заработать
Легенды спорта
Литература о азарте
Любопытно
Новости букмекеров
Новости спорта
Новости футбола
Около спорта
Платёжные системы
Покер
Прогнозы на спорт
Спортивное видео
Спортивный юмор
Ставки на мобильном

 

Китайские магазины
◊ Vip-files и Letitbit



 Азарт, вероятность, реклама часть 1

Азарт, вероятность, реклама часть 1

Азарт, вероятность, реклама

Виктор ЛАВРУС

На заре человечества появились азартные игры. Их история начинается с игральных костей. Изобретение этого развлечения, источника радостей и несчастий, приписывается и индийцам, и египтянам, и грекам в лице Паламеда.

При раскопках в Египте находили игральные кости разной формы – четырехгранные, двенадцатигранные и даже двадцатигранные. Но, разумеется, больше всего находили шестигранные, то есть кубы. Главная причина преимущественного их распространения – простота изготовления. Удобно и то, что цифры от единицы до шести не слишком малы и не слишком велики. Оперирование, скажем, с двадцатигранниками потребовало бы уже умственных напряжений для производства арифметических действий. Поэтому кости иной формы, чем кубы, применялись в основном для предсказания судьбы.

Двадцатигранники нашли применение в науке. Японские фирмы выпустили кость, на которой противоположные грани обозначены одним числом. Таким образом, при бросании выпадают цифры от 0 до 9. Бросая кость, можно создавать ряды случайных цифр, которые нужны для проведения весьма серьезных расчетов методом Монте-Карло.

Азарт

Популярность игры в кости в Древней Греции, в Древнем Риме и в Европе в средние века была исключительно велика, в основном, конечно, среди высших слоев населения и духовенства. Увлечение игрой и кости слугами церкви было столь значительно, что епископ кембрезийский Витольд, не сумевший ее запретить, заменил игрой в «добродетели». Что это за игра? Вместо цифр на гранях костей были изображены символы добродетелей. Правила игры, правда, были сложными, нелегким был и итог: выигравший должен был направить на путь истинный (в отношении проигранной добродетели) того монаха, который потерпел поражение.

Вряд ли эта подмена радовала служителей культа, так как, несмотря на то, что государственные и церковные деятели неоднократно запрещали монахам играть в азартные игры, те продолжали «тешить беса».

Еще труднее было бороться с этой страстью у придворных, рыцарей, дворян и прочей знати. Указами и сообщениями о наказаниях за нарушение этих указов, жалобами членов семьи на своего кормильца и другими подобными историями полна средневековая пресса. Увлечение было насколько сильно, что существовали не только ремесленники, изготовлявшие кости, но и школы по изучению премудростей игры.

Играли двумя костями, а больше – тремя. Их встряхивали в кубке или в руке и бросали на доску. Игр существовало множество. Но, вероятно, наибольшее распространение имела игра – кто выбросит большую сумму очков.

В России игральные кости не пользовались большой популярностью. Возможно, это объясняется тем, что «просвещение» захватило придворные круги уже тогда, когда в Европе мода на кости прошла, и появились карты. Зато повсеместно процветала игра в орлянку. Оставим без внимания эту простую игру и вернемся к более сложной – к игре с костью-кубом с шестью цифрами.

Игрок встряхивает кубок рукой и выбрасывает из него кости. Вверх смотрят какие-то цифры. Какие? Любые. Предсказать их невозможно, так как здесь господствует «его величество случай». Результат события случаен, потому что зависит от большого числа неконтролируемых мелочей: и как кости легли в кубке, и какова была сила и направление броска, и как каждая из костей встретилась с доской, на которую бросали кости. Достаточно крошечного смещения в начале опыта, чтобы полностью изменился конечный результат.

Таким образом, огромное число факторов делает совершенно непредсказуемым результат выброса костей, изготовленных без жульничества. А рассуждения о том, что вот если бы была возможность разместить кости в кубке в положении, фиксируемом с микронной точностью, да если бы еще направление выбрасывания костей можно было бы установить с точностью тысячных долей углового градуса, да, кроме того, силу броска измерить с точностью до миллионных долей грамма... вот тогда можно было бы предсказать результат, и случай был бы с позором изгнан из этого опыта, – есть абсолютно пустой разговор. Ведь постоянство условий, при которых протекает явление или ставится опыт, есть практическое понятие. А условия проведения двух испытаний одинаковы лишь в том случае, если мы не можем установить различий между ними.

Если тысячи и миллионы опытов, поставленных в одних и тех же условиях, всегда приводят к определенному событию (выпущенное из руки яблоко падает на землю), то событие называется достоверным. А коль скоро миллионы опытов показывают, что некоторый их исход никогда не наблюдается (монета, брошенная на стол, никогда не останавливается на ребре), то такие события называются невозможными.

Случайные события лежат между этими двумя крайностями. Они иногда происходят, а иногда нет, хотя практически условия, при которых мы их наблюдаем, не меняются.

Слово «азарт» приобрело в русском языке новый смысл. Это перевод французского слова hazard, что означает «случай» (до революции писали – азардные игры). Так что азартные игры – это игры, построенные на случае, что звучит уже вполне научно и респектабельно.

Вероятность

Выпадение кости – классический пример случайного события. И все же интересно, можно ли наперед предусмотреть, предугадать, наконец, рассчитать и предсказать результат такого события, и как это делается? Когда мы сталкиваемся с одинаковыми ситуациями, которые приводят к случайным исходам, используется понятие «вероятность». Вероятность – это число. А раз так, то оно относится к точным понятиям, и чтобы не попасть впросак, надо пользоваться этим словом с той определенностью и недвусмысленностью, которые приняты в естествознании.

Рассуждение начинается так. Есть некая исходная ситуация, которая может привести к разным результатам: кость-кубик может упасть вверх любой гранью, из колоды берется карта – она может быть любой масти, родился человек – это может быть мальчик или девочка, завтра наступит 20 марта – день может быть дождливым или солнечным... Число исходов событий может быть самым разным, и мы должны все их держать в уме и знать, что один из них произойдет обязательно, то есть достоверно.

Перечислив все возможные исходы, возникающие из некой ситуации, математик скажет: дана группа исходов события, которая является предметом изучения теории вероятностей.

Различные результаты события, то есть различные представители группы, могут быть равновозможными. Этот самый простой вариант случайности осуществляется в азартных играх. Введем число вероятности на примере игральной кости.

Группой исходов события является выпадение единицы, двойки, тройки, четверки, пятерки и шестерки. «Исход события» звучит немного громоздко, и мы надеемся, что читатель не будет путаться, если мы иногда не станем писать первое слово. Итак, событий в группе шесть – это полное число событий.

Следующий вопрос, на который следует ответить, таков: сколько из этих событий дают интересующий нас результат? Допустим, мы хотим узнать вероятность выпадения тройки, то есть нас волнует осуществление одного события из группы. Тогда число благоприятных вариантов (одно – тройка) делят на полное число событий и получают вероятность появления интересующего нас события. В нашем примере вероятность выпадения тройки будет равна 1/6. А чему равна вероятность появления четной цифры? Очевидно, 3/6 (три благоприятных события делят на общее число событий, равное шести). Вероятность же появления числа, кратного трем, равна 2/6.

В приведенном примере, сразу ясно, о какой группе событий идет речь, вполне очевидно, что все события из-за равенства условий имеют одинаковые шансы осуществиться и заранее ясно, чему равняется вероятность интересующего нас события.

В более заурядных случаях могут быть осложнения двух типов.

Первое – вероятность исхода события не очевидна заранее. Тогда значение вероятности может быть установлено лишь на опыте.

Другая трудность, скорее логического порядка, появляется тогда, когда нет однозначности в выделении группы явлений, к которой относится интересующее нас событие.

Во всех случаях следует помнить, что когда начинаешь оперировать числами, необходима точность в постановке задачи; исследователь всегда должен формализовать явление.

Вернемся к игре в кости. Одной костью никто не играет: слишком просто и загодя известно, что вероятность выпадения любой грани – 1/6, и никаких математических задач в такой игре не возникает.

При бросании трех или даже двух костей появляются проблемы, и можно задать, скажем, такой вопрос: какова вероятность появления двух шестерок? Каждая из них появляется независимо с вероятностью, равной 1/6. При выпадении шестерки на одной кости вторая может лечь шестью способами. Значит, вероятность выпадения двух шестерок одновременно будет равна произведению двух вероятностей (1/6 · 1/6). Это пример так называемой теории умножения вероятностей. Но на этом проблемы не заканчиваются.

Закон, найденный Бернулли

Вероятность того, что при случайном броске монета ляжет гербом кверху равняется 1/2. Значит, зная вероятность события, мы можем предсказать, что при стократном бросании монеты герб появится 50 раз? Не обязательно точно 50. Но что-нибудь около этого непременно.

Предсказания, использующие знание вероятности события, носят приблизительный характер, если число событий невелико. Однако эти предсказания становятся тем точнее, чем длиннее серия событий.

Заслуга этого открытия принадлежит Якову Бернулли (1654...1705). Он был замечательным исследователем. Конечно, и Галилей, и Паскаль, и другие мыслители, которые вводили вероятность как дробь, равную отношению благоприятных случаев к общему числу возможных вариантов, превосходно понимали, что на опыте предсказания комбинаторных подсчетов осуществляются приблизительно. Им было ясно, что число бросков, при которых монета ляжет гербом кверху, не равно в точности, а лишь близко к половине от общего числа бросков, а число бросков кубика, приводящих к шестерке сверху, не равно в точности, а лишь близко к 1/2 от общего числа бросков. Но насколько близко, сказать они не могли. На этот вопрос ответ дал Яков Бернулли. Открытый им закон, который мы называем «законом больших чисел», лежит в основе статистической физики; без этого закона не могут обойтись статистики ни одной области знания. Сущность этого закона весьма проста.

Положим, «честная» монета бросалась тысячу раз, потом еще тысячу раз, потом еще... И так много раз. Разумеется, герб редко появится ровно 500 раз. Будут серии, где отношение числа появляющихся гербов к 1000 будет совсем близко к 1/2, и такие серии, где отклонение будет довольно значительным. Каким закономерностям подчиняется это отклонение от теоретической вероятности? И – самое главное – как будет меняться отклонение от вычисленной вероятности с увеличением числа бросков?

Яков Бернулли строго доказал, что разности отношения удачных бросков к общему числу бросков и теоретического числа вероятности (в нашем примере – отклонения от 1/2) уменьшаются с возрастанием числа бросков, и эти отклонения могут быть сделаны меньше любого малого, наперед заданного числа.

Отношение числа удачных бросков к общему числу бросков называют «частотой». Закон больших чисел можно сформулировать и так: по мере увеличения числа опытов «частота» события сближается со значением вероятности.

Отклонения «частоты» от вероятности при большом числе бросков, измеряемом тысячами, становятся совсем незначительными. О результатах своих немудреных опытов по бросанию монеты поведали миру математики XVIII века. В одном таком опыте герб выпал 2028 раз при общем числе бросков 4000; когда число бросков достигло 12000, то оказалось, что герб появился 6019 раз; наконец, при числе бросков 24000 герб выпал 12012. Частоты при этом изменялись так: 0,507; 0,5016 и 0,5005.

Однако, надо ясно представлять себе, что это сближение «частоты» с вероятностью есть лишь общая тенденция. Может случиться, что отклонения от вероятности для меньшего числа опытов окажутся такими же или даже меньшими, как и отклонения при большом числе опытов. Вообще же эти отклонения от предельных законов вероятности также носят статистический характер.


Дата публикации: 31.05.2008
Страница прочитана: 355 раз

comments powered by Disqus
Share |
Вернуться назад

Tipbet Sports 200% Welcome Bonus

Winlinebet - новый удобный букмекер, бонус 50%
1Bet2bet - букмекер подходящий для Израиля



 

Blogabet.ru
Admiralbet.ru
Freebets.ru


 
 Predictions in english
 Америка
 Баскетбол
 Видео блог Kappara
 Другие виды
 Другие сайты
 Зимние виды
 Наш паровоз
 Прогнозы форумчан
 Теннис
 Футбол
 Хоккей

 

Leon


 

- Soccer Predictions
- Надежные ставки
- Bestbet1x2.com
- Bet88.Ru
- Результаты матчей Live
 
- Баскетбольный портал

- Ставки без риска
   
- Ставки на футбол
- Betfait.ru
- Стань партнером
- European partners
- Предложение партнёрства

MyCounter - Ваш счётчик 
 Сайты клубов
Сайты партнёров
Сайты с прогнозами
Сайты о азарте
Partners


 

Биржи ставок
Betcomrades
Betfair.com
Jamber.co
Matchbook.com
21bet.com

Все букмекеры
888sport
138.com
10bet.com
1Xbet.com
1bet2bet.com
Betclub.com
Betmaster
Betfair.com
BetStore.com
Bet-at-home.com
Bwin.com
Betmira.com
Betin.com
Betway.com
Betsson.com
Betsafe.com
Bet365.com
Bodog.com
Betclic.com
Bovada.lv
DafaBet.com
GolPas.com
Goldbet.com
GoBetGo.com
Goalbet.com
Gamebookers
Comeon.com
Contorabet
Fonbet.com
FavBet.com
Noxwin.com
◊ NetBet.com
Melbet.com
◊ Mybet.com
Марафонбет
MagicRed.com
◊ Leonbets.com
◊ LadBroces.com
Luxbet.com
Ligastavok.ru
◊ Optibet.com
◊ Planetofbets
◊ Privatbet.com
◊ Parimatch.com
Paddypower
◊ Pinnaclesports
◊ PartyPoker.com
RedBet.com
ReadyToBet
Rivalo.com
RoadBet.com
RealBetDealer
RedStarbet.com
Sportsbet.com.au
◊ SBOBet.com
◊ Sectorbet.com
◊ Sportsinteraction
◊ Sportingbet.com
Tipbet.com
Expekt.com
Skedina.com
◊ Triobet.com
◊ Titanbet.com
Intertops.com
Interwetten.com
Tonybet.com
TopBetta.com
Oddsring.com
Offsidebet.com
◊ Unibet.com
◊ VictorChandler
◊ Vbet.com
WillHill.com
Winmasters
Winner.com
Whitebet.com
WinLine.com

Платежные системы

AlertPay
Moneybookers
Rupay.com
PayPal.com
Advcash.com
Neteller.com


 

 

Bonuscodepoker


Сделано сайтом Kappara.ru Сайт Kappara.ru не коммерческий проект. Здесь ничего не продают и не покупают , авторы не несут ответственности за прогнозы и материалы сайта.
Если были нарушены чьи то авторские права напишите нам kappara@live.ru и спорные материалы будут удалены в течении суток.Sitemap for google   Карта сайта
Rambler's Top100 Израиль - каталог сайтов, рейтинг, обзоры интернета Яндекс.Метрика